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A method is described for studying the stability of two-dimensional equilibria of 
magnetically confined plasmas. The equations of magnetohydrodynamics (MHD) are 
linearized and the resulting time-dependent first-order system of equations is solved. Unstable 
equilibria result in exponentially growing solutions. The plasma is assumed to be incom- 
pressible and resistivity is included in the model. The equations are solved in cylindrical coor- 
dinates and the perturbations vary asf,(r, z, t) exp(inr9). Nonaxisymmetric modes (n # 0) are 
considered. Tearing mode results for one-dimensional analytic equilibria are compared with 
earlier work. A numerically generated equilibrium, modeling the field reversed theta pinch 
experiment, is shown to be unstable to the n = 1 tilting mode. 

1. INTRODUCTION 

The generation of energy from fusion via magnetic confinement depends on several 
factors. The plasma, an ionized gas, is heated to a sufficiently high temperature and 
needs to be contained by magnetic fields long enough for the fusion reactions to 
occur. 

The magnetically confined plasma may be described by the equations of magneto- 
hydrodynamics (MHD). The complex nonlinear nature of these equations requires 
that simplifications be made to study different properties. One equation arises in the 
discussion of equilibria. The solution is assumed to be time independent and usually 
static. The equation of motion then reduces to force balance; the forces due to the 
pressures of the plasma treated as a fluid are balanced by those exerted by the 
magnetic fields. The resulting equation is nonlinear and in most interesting cases is 
solved numerically. The equilibrium may be unstable, however. Small perturbations 
about such an equilibrium grow exponentially and in a short time may significantly 
deform the original configuration, possibly destroying confinement. 

The growth of the instability may occur on several time scales. The slowest charac- 
teristic time is the resistive diffusion time t, which is the time for the equilibrium 
fields to diffuse away due to collisions of the particles. A significantly faster time is 

* Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore 
National Laboratory under contract number W-7405-ENG-48. 

’ Present address: Los Alamos National Laboratory, Los Alamos, New Mexico 87545. 

69 
002 l-999 l/82/040069-28$02.00/0 



70 SHESTAKOV,KILLEEN AND SCHNACK 

the hydromagnetic-transit time ra the time required for an Alfven wave to travel 
across the plasma. The fastest growing instabilities are those whose growth time is 
comparable to rn. These instabilities are independent of plasma resistivity and can be 
studied with a simplified set of equations. Other instabilities grow on time scales 
between rr, and rn. Their study requires use of a higher order system of equations 
which include resistivity. 

The study of resistive instabilities was first investigated by Furth et al. [l] who 
considered a plane-plasma sheet in a sheared magnetic field. The effects of resistivity 
are confined to a narrow region in which the resistive MHD equations are used. The 
infinite-conductivity equations are solved outside of this region and the corresponding 
solutions are matched at the intersection. Killeen [2] solved the full set of 
incompressible-resistive MHD equations using numerical methods for both Cartesian 
and cylindrical coordinate systems. Effects of viscosity, compressibility, and thermal 
conductivity were later introduced by Dibiase and Killeen [3]. In the above studies, 
the equilibria were given by one-dimensional analytic functions; the walls, when 
considered, were allowed to come in contact with the plasma. 

In this paper we shall present a numerical method to study the stability of two- 
dimensional axisymmetric equilibria that will in general be generated numerically. 
We envision plasmas surrounded by vacuum regions. Our approach is to linearize the 
resistive MHD equations about the equilibrium and solve the resulting equations for 
the perturbed quantities. These perturbations vary as fi(r, z, t) exp(in@ and we shall 
consider IZ > 1. Axisymmetric instabilities (n = 0) are studied with a simplified set of 
variables [4]. We shall obtain time-dependent equations. Unstable equilibria are 
characterized by the appearance of an exponentially growing solution which 
dominates the result. 

In Section 2 we shall describe the mathematical model, and in Section 3 the 
boundary and initial conditions are discussed. Section 4 proves that no spurious 
solutions arise from our system of equations. The numerical method used to solve the 
system of equations is described in Section 5. Numerical results are given in 
Section 6; first earlier results are corroborated in order to demonstrate the ability of 
our method to study resistive instabilities. Later, a two-dimensional equilibrium 
modeling an existing experimental device is studied. Last, we shall discuss extensions 
to other experiments and give concluding remarks. The component equations and 
other long expressions are found in the appendix. 

2. MATHEMATICAL MODEL 

We shall assume that the equations of MHD for a single fluid describe the plasma. 
The normalized equation of motion is, 

1 = (V x B) x B - VP, 
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where p is the density of the fluid, v the fluid velocity, B the magnetic induction, and 
p the fluid pressure. The equation of state is 

P=PT (2) 

where T is the temperature. The electromagnetic fields are related via Maxwell’s 
equations. Plasma resistivity, q is included in Ohm’s law. 

Maxwell’s equations and Ohm’s law are combined to give a time-dependent 
equation for B: 

aB 
at- ---$V~WXB)+VX(VXB). (3) 

We have used two characteristic times, the Alfven time rH and the resistive- 
diffusion time ra in our normalization. In CGS units, tH = a(47r@))“‘/(B), and 
z, s 47ra*/(q) c*. Spatial distances have been normalized to the characteristic 
distance a; (u) denotes a characteristic value of u. Time is normalized to ra, 
velocities to the AlfvCn speed a/t, and S(=r,/t,) is the magnetic Reynolds number. 

The dependent variables are expressed as a sum of equilibrium and perturbed 
quantities, f = f0 +f, , respectively. The equilibrium is assumed to be static (vO = 0) 
and the fields B, are given functions obtained from solving the pressure balance 
equation. Equations (1) and (3) are linearized and effects of perturbed resistivity do 
not appear. Using Eq. (3) the time behavior of the perturbed magnetic field is given 
by 

ah 1 
at - - 7” X (TV X 4) + V x (v, x B,). 

We assume incompressibility. This and Maxwell’s equations imply 

V.v,=O=V.B,. (5) 

We linearize Eq. (l), take the curl twice and neglect the perturbed density. Using 
Eq. (5), we find 

The principal equations are (4) and (6). We assume that B, is the known 
equilibrium field, and will use several choices for v. The perturbations very as 

fi =A@-, z, 0 ev(i@. (7) 

We shall consider nonaxisymmetric modes (n # 0). By proper orientation the above 
coordinate system allows us to consider either cylindrical or toroidal geometries. 
Equations (5), (7) and the assumption n # 0 allow elimination of the toroidal 
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components of vi and B,. When these substitutions are inserted in Eqs. (4) and (6), 
we obtain a set of four coupled complex-partial differential equations for the poloidal 
components: B,i, B,,, vrl, v,,. We write these variables as fi(r, z, t) =fF(r, z, t) + 
if:@, z, t). This substitution yields eight real equations. In the following we will not 
write the superscript “R” to denote the real component of the perturbation. The 
component equations are found in the appendix. 

3. BOUNDARY AND INITIAL CONDITIONS 

In all cases discussed the domain of interest is rectangular. 

R,< r<R,,,, z,<z<z,. (8) 

Case 1. We first reproduce results of Dibiase and Killeen [3] for one-dimensional 
equilibria B,(r). This work studied resistive instabilities in cylindrical plasmas, where 
the perturbations varied as f, =fi(r, t) exp(in0 + ikz). In the present work, we model 
this by setting, 

R,=O, R,,,>O, -Z, = Z, = n/k. 

The perturbations are required to be finite at r = 0 (see below). We use conducting 
wall boundary conditions at r = R,, and periodic conditions at z = of: Z,,,. 

Case 2. Next we study the stability of two-dimensional equilibria without 
toroidal field, B, = B,&, z) i + B,Jr, z) z”. The equilibrium was computed by 
Anderson and Barnes [5] and models the reversed field theta pinch experiment 
FRX-B [6] at the Los Alamos National Laboratory. This scenario imposes R, = 0, 
R, = device radius, -Z, = Z, = device half length. 

When the domain of computation extends to the z axis (i.e., 0 & r< RM), the 
boundary conditions on the axis depend on the toroidal mode number n. We shall use 
the same conditions as in [3]: 

3B,, au,, n=l -= - = 0 = B,, = v,, 
ar ar 

at r=O 

n>2 Br,=Bzl =url =u,,=O at r=O. 

At conducting walls we require that n . B, = n . v, = 0. Furthermore, requiring that 
the toroidal component of the perturbed current vanish at the wall gives a Neumann 
boundary condition for the tangential-magnetic field component. We also need to 
prescribe the tangential-velocity component at the walls. Here we assume symmetry 
and likewise obtain a Neumann condition. Thus, when r = R, defines a conducting 
wall we set 

U 
au,, aBz, ,l=B,l=O=-=- 
8r & 

at r=Rw. (loa) 
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Along walls given by z = Z,, 

V 
aor, zI=Bz,=O=-~- . aBr, = o 
az az (lob) 

No distinction in the boundary conditions is made for the real or imaginary 
components of the modes. 

When the equilibrium is unstable the modes grow exponentially in time. Hence, the 
growth rate and the spatial mode structure is independent of the initial conditions. 
The calculation proceeds until the fastest growing mode dominates. At the start we 
shall give the radial velocity an initial smooth profile. Specific initial conditions are 
described in the results. 

4. PHYSICAL VALIDITY OF SOLUTIONS 

We shall now show that if vi and B, are exponentially growing solutions of 
Eqs. (4) and (6), then these functions represent unstable perturbations of the 
equilibrium. 

Define the vector 

K, = (V x B,) x B, + (V x B,) x B, 

If p is the growth rate (e.g., vr(x, t) = v,(x) exp(pt)), consider the vector 

(11) 

Q=--pv,+K, (12) 

We will require that 

Q-8=0, (13) 

where n^ is the unit normal to the conducting wall. Since fi . vr = 0, Eq. (13) is 
satisfied whenever 

n”X(VxB,)=O=n^x(VXB,). (14) 

The first relationship holds since the plasma is insulated from the solid walls by a 
vacuum region where the equilibrium current vanishes. The second half of Eq. (14) 
has previously been imposed on the poloidal components of B, (see Section 3). The 
requirement for the toroidal component Be, is 

and 

apB,,yar= 0 at r-walls 

aBel/aZ=o at z-walls. 
(15) 
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Using div B, = 0 to eliminate Bel, Eqs. (15) impose additional conditions on the 
derivatives of B,, and B,,. Details are found in the Appendix (Eqs. (A5) and (A6)). 
Thus, Eq. (13) holds. 

Equations (6) and (12) imply that V X (V X Q) = 0. Therefore, 

VxQ=V#, 

where the scalar function 4 is the solution to the Neumann problem 

V’# = 0. 

Boundary conditions for Eq. (17) are obtained by prescribing 

(16) 

(17) 

84 an=“. (VxQ)=O. (18) 

In the Appendix we shall show what additional conditions on B, are required to 
satisfy Eq. (18). Let s, be a point on the boundary and impose #(so) = 0. The 
function 4 is now uniquely determined and given by $ = 0. Recalling Eq. (16), it 
follows that Q is curl free, hence, Q is the gradient of a scalar function, 

Q=b,- (19) 

This function is computed by solving the elliptic problem, 

V2p,=VQ=VK,. (20) 

The boundary condition for Eq. (20) is given by Eq. (13), i.e., +J,/&z = 0. 
The function p, is identified as the perturbed pressure. Equations (12) and (19) 

imply that 

pv, =-VP, +K,. (21) 

As asserted, the modes vi and B, satisfy the linearized equation of motion; thereby 
constituting perturbations of the equilibrium B,. 

5. METHOD OF SOLUTION 

The system of interest can be summarized by the following equations (see 
Eqs. (Al)-(A4), for full details): 

(23) 
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$ [ 
2 au,, jwvr,) +-- r C?Z 1 =F4(Br,,Brl,B:,,B:,), 

where 

(26) 

(27) 

(28) 

The functions F,, F, represent the respective components of V X (vr X B,) in 
Eq. (4) and contain derivatives up to first order. The functions F,, F4 in Eqs. (24) 
and (25) denote the components of the r.h.s. of Eq. (6); these functions contain 
derivatives up to third order in both B, and B,. 

Equations for the imaginary components are similar. They are obtained from 
Bqs. (22)-(25) by substituting U’ for U, and -u for u’. Thus, the Bi, equation is 

#I 
-=+L(B;,)+ . . . +nB,+ 

at 
(29) 

The case with no toroidal field, i.e., Boo = 0 is attractive since the real and 
imaginary component equations decouple and are equivalent. This allows us to solve 
for only the four real components, B,, , B,, , vrl, and v,, . 

The elliptic solver used to advance Eqs. (24) and (25) imposes a uniform mesh in 
z; the r-mesh may be nonuniform. Derivatives are approximated by central 
differences, e.g., 

au(ri,zj) ui+lJ- ui-l,j 

ar - ri+l-ri-L 

and 

a*u(ri, zj) Iv 2 

( 

ui+ 1,j - ui,j ui,j - ui- I,j - 

&* 
(r 

ri+l - ri ri-ri-1 ,i 
i+1- ri- 117 

(30) 

where uij denotes the approximation to u(ri, zj). These differences are valid for 
nonuniform meshes, but then become first-order correct. 

We use two time-advancement techniques. Version A, an early development, was 
used whenever the resistivity was held constant or varied only in r and its gradients 
could be neglected. Such a case arises in stability studies for an equilibrium with little 
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axial variation. An example is the reversed field theta pinch to be described in the 
next section. Version B is more general; it allows q = V(Y, z), and includes resistivity 
gradients. We shall first describe Version A. 

If the Vq terms are neglected in Eqs. (22) and (23), note that Eq. (23) does not 
depend on B,, . Let U” denote the approximation to u at time ndt. Assume that By, VT 
and By-’ are known. Let L, and Fd2, respectfully, denote the finite-difference approx- 
imations to the operators L and F, found in Eqs. (23) and (27). We first advance B,, 
by the following scheme: 

(B ;,+’ - B:;‘)/2& = 6 [L,(B;: ‘) + L,(B:-‘)I 

+ F&:l , u:J - + B,, 0:;“. (31) 

After solving Eq. (31), the result is used in the difference approximation to Eq. (22) 

(B;:’ - B;;‘)/2At 

where Md, D,, and Fdl are, respectively, the finite-difference approximations to M in 
Eq. (28), a/& and F, in Eq. (22). 

The solutions of Eqs. (31) and (32) require the inversion of the operators 
(Z - (At q/S) Ld) and (Z- (At q/S) MJ. This is easily done when the domain is 
rectangular, the z-mesh uniform and the number of z-mesh points is of the form 2 p 
[7]. The last restriction may be relaxed [SJ, but relaxation of the first two is related 
to the difficult problem of finding a fast solution to an elliptic equation in an 
arbitrary domain. 

Once, Eqs. (31) and (32) are solved successively, the new fields By+’ are 
substituted in the time-centered difference approximation to Eqs. (24) and (25) 

LAG+‘) - k,(G) =~tF::“2(B,,, B,, ,B:,, B’,,), (33) 

and 

where Fi: ‘/* and Fi$ ‘I* are time-centered difference operators, e.g., 

F;:“*(B,, ,...) = Fd3((B;;’ + B;,)/2 ,... ). 

Equation (33) is first solved for u::’ and the result is substituted in Eq. (34) to 
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compute uFi+ ‘. The solution of Eqs. (33) and (34) require inverting large-sparse 
matrices. This is similarly accomplished by the method described in [7]. 

The above scheme can be iterated to achieve second-order temporal accuracy. 
Once Eqs. (33) and (34) are solved, new time-centered velocities are computed, 
v;+‘/*I(“~fV;+l )/2. Equations (31) and (32) are modified; 2At is replaced by At 
and BT-’ by By. The result is a time-centered equation for the corrected values By+‘. 
These values are then substituted in Eqs. (33) and (34); the cycle is repeated until a 
desired accuracy is obtained. Numerical experience has shown that the correction 
cycles are unnecessary. 

The more general Version B is used for configurations in which the plasma is 
surrounded by a vacuum. In this case the equilibrium resistivity, q, is allowed to 
increase to a large value. The vacuum is modeled as a highly resistive region. Version 
B is also used whenever we seek perturbations driven by resistivity gradients. 

We shall now describe Version B. The spatial derivatives of B, in Eqs. (22) and 
(23) are separated into those with respect to r and z. The two equations are expressed 
in vector form as 

ah 1 
at - s [WV + dz(W + WBJI + WJ,), (35) 

where d, contains derivatives in the i-direction, H collects the nondifferented terms 
and B, = (Brr, B,,)T. A similar equation holds for B{. Let D, and F, denote the 
finite-difference approximations to the operators di and F in Eq. (35); assume that 
By, vy are known. Equation (35) is discretized using an alternating direction-implicit 
scheme (ADI) 

(B :+l’* - B:)/(At/2) = P[D,(B:+~‘~) + D,(B;) + ~I-I(B:+~/* + BY)] 

+ Fc,W, (364 
n+l 

(B, -B~+1’2)/(At/2)=S-‘[D,(B;+1’2) +D,(B:+‘) 

+ ;H(B:+’ + B:+1/2)] + F&Y). (36b) 

The velocity terms Fd(v:) are left explicit. These equations lead to linear systems in 
block-tridiagonal form. The coefficients of the system are time independent, hence, 
the L-U decomposition of the matrices is done only once. By properly arranging the 
back-substitution steps, the innermost DO-LOOPS can be vectorized [9]. 

Once Eq. (36b) is solved for By+‘, the velocity fields are advanced using Eqs. (33) 
and (34). As in Version A, this scheme may be ‘iterated. The newly computed v;’ ’ 
are used to define a time-centered velocity v;’ 1’2 = (v;’ ’ + v;)/2. This field is then 
substituted into Eqs. (36a) and (36b), giving a system of equations for the corrected 
values By+‘. Corrected values for v; + ’ are computed as in Version A. 
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6. NUMERICAL RESULTS 

We shall investigate the stability of several equilibria. The problem consists of 
prescribing the boundary and initial conditions for the perturbations B, and vi and 
specifying the equilibrium of interest B,. If the.equilibrium is unstable, the equations 
yield exponentially growing solutions, f =f,(r, z) ept, where p is the growth rate. We 
compute a pointwise growth rate pij = (2/dt)(f>+’ -fG)/(f;+’ +ft). When the 
modes have settled into exponential growth and pij approaches a constant over the 
entire mesh for every component at every time level, the computation is terminated. A 
slight modification of the above can be used to diagnose growth rates with complex p 
[lo]. We have not observed this behavior in our studies. 

6.1. One-Dimensional Equilibria Studies 

First we shall present results that corroborate earlier simpler models ([3, 11 I). 
These one-dimensional equilibria B, = B,(r) are given in terms of analytic functions. 
The plasma is cylindrical and infinite in length and extends radially outward to a 
conducting wall. In the cylindrical coordinate system used, z defines the axial length 
and 8 the azimuthal angle. Dibiase and Killeen assume that the modes vary asf,(r, t) 
exp(in8 + ikz); and perform a parameter study of II and k. 

The work of Dibiase and Killeen is one‘ dimensional. Once k and n are fixed, 
linear-difference equations are solved for the one-dimensional variables. We shall 
reproduce those results by specifying n, and define the domain, 0 ,< r < R,, 1 z 1 < n/k. 
At time t = 0, the radial components of v, have a trigonometric axial dependence, 
e.g., url = url(r) cos kz, u:, = v,i(~) sin kz. The radial profile depends on n, 

u,l(r) = (1 - QL,>*, if n=l, 

= r( 1 - r/R,)*, if n > 1 at t = 0. 
(37) 

Although the final radial structure is determined by the case chosen and agrees with 
the work of [3, 111, the axial-trigonometric variation remains unchanged. In this 
study, periodic boundary conditions are imposed in the z-direction. 

Occasionally the trigonometric structure in z is destroyed; higher harmonics are 
introduced into the calculation by the difference scheme. We control these in one of 
two ways. For the 1-D models “filtering” may be used. After each time step discrete 
Fourier analysis is done in the z-direction and only the longest 2x/k wavelength is 
allowed to remain. Another technique is “smoothing” [ 121: if Us:: I* * denotes the 
result of the time advancement, the “smoothed” 

Utj” = (1 - 2wAt) U,i+l’* + wAt(U,lj+_l;* + UT,?+‘;*) (38) 

and defines the approximation to u(ri, zj) at time (n + 1)dt. Care must be exercised 
when using smoothing as it dampens the growth of all the wavelengths [ 131, albeit 
the shorter wavelengths are suppressed more than the longer ones. The “amplification 
factor” is 1 - 4wAt sin’(rrj/N), where j = 1, 2,..., N/2; longer wavelengths 
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corresponding to smaller values ofj. In order to avoid overdamping it is required that 
0 < wAt < a. For small wdt, smoothing diminishes the growth of the longest 
wavelength by exp(--4wAt(n/N)*) in one time step. If the solution is to grow by a 
factor exp(pAt), the effect of smoothing is to produce a smaller grow.th rate. One then 
needs to compare the resulting numerical growth rate with 4w(rr/N)‘. We used 
smoothing only in the z-direction and only on the velocity components. It is 
noteworthy to mention that for the 1 -D equilibria models discussed here, the 
exp(ikz) structure of the perturbations is maintained. 

Before comparing our results with those of [3, 111, we note a difference in the two 
normalizations. Our time variable is normalized to the Alfven time, 7H, while the 
earlier work normalized to the resistive-diffusion time, zR. Since S = tR/rH, the 
growth rates need to be scaled properly. If pa, pR, respectfully, denote the growth 
rates of the present work and that of Dibiase and Killeen, the scaling algorithm is 
PA =PRIS’ 

In order to observe the effects of resistivity in a reversed field configuration, we 
consider the Lundquist fields [ 141 or the Bessel Function Model (BFM). Similar 
configurations can be constructed in the laboratory. The BFM is an example of a 
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FIG. 1. Bessel Function Model profiles. 
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force-free configuration. The equilibrium current -V x B, = vB,,, therefore, Vp, = 0. 
Such a configuration is given by 

B, = J,(r) d + J,(r) 2, (39) 

where J, and J, are Bessel functions of the first kind. The profiles are shown in 
Fig. 1; the field is sheared and has a reversed axial component. In order to have a 
realistic configuration, only one B,, sign reversal is allowed, hence, the wall radius 
R, < 5.520. 

For this model we fix R, = 5.5 thereby getting a configuration unstable to tearing 
modes. Fig. 2 displays a parameter study of the growth rate p vs. k for S = 100, 
n = 1. We present both our results as well as those of Dibiase. (For comparison 
purposes, the second results have been resealed.) Figure 3 is a radial profile of the u 
components for S = 100, n = 1, k = 0.3. This figure is contrasted with Fig. 4, where 
we show the same profiles for S = 104. The steepening of the profiles for larger S is 
characteristic of tearing modes indicating a narrowing singular surface. The results 
for the larger S were obtained using 32 uniformly distributed axial points, and 140 
radial points. The radial mesh was not uniform allowing a finer resolution of the 
large gradients. Figure 5 plots the variation of p, the growth rate, with S. We also 
show a linear least-squares fit to the logarithm of the relationship: p = aSD, and the 
resulting interpolant to the largest two values of S, 4000 and 10,000. The respective 
exponents are /I = -0.453 and /? -0.558. These results are in excellent qualitative 
agreement to numerical calculations for the sheet pinch equilibrium model [ 151. The 
growth rate for smaller S is less than that predicted by analysis. The analytic theory 
of Furth et al. [I] predict p = -0.6 (when time is normalized to 5”). We note that the 
theory holds only for asymptotically increasing S. At lower values, the parabolic 
terms in Eq. (14) are expected to introduce greater diffusion thereby decreasing the 
growth rate. 

The results show that our model correctly computes resistive MHD modes. The 

-0.2 0 0.2 0.4 0.6 
k 

FIG. 2. Bessel Function Model. Growth rate p vs. axial wave number k; n = 1, S = 100. 
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FIG. 3a. Bessel Function Model. Perturbed u,,; S = 100, n = 1, k = 0.3. 

FIG. 3b. Bessel Function Model. Perturbed oz1; S = 100, n = 1, k = 0.3. 
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r 

FIG. 4a. Bessel Function Model. Perturbed v,, ; S = 104, n = 1, k = 0.3. 

FIG. 4b. Bessel Function Model. Perturbed v,,; S = i@, n = 1, k = 0.3. 
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FIG. 6. Peaked Tokamak Model. Growth rate p vs. k; S=lOO. n=l(-O-); n=2(a); 
n = 3 (-A-). 

characteristic of ideal modes. In Fig. 9 we display the B,, profiles for widely different 
Reynolds numbers, S = 103, 106. 

The computer program computes the fastest growing mode, ideal or resistive. The 
Peaked Tokamak Model is unstable to the n = 1 infinite-conductivity kink mode 
[ 161. For n = 2, our results show that the model is likewise unstable to ideal modes. 
At large the S, the perturbed B,, vanishes at the singular surface (see Fig. 9b), 
evidence of ideal modes [ 161. Our conclusion is that the dominant n = 2 instability at 
large S is an ideal kink mode. At lower values of S, resistivity effects modify both the 
mode structure and the growth rate. 

6.2. Two-Dimensional Equilibrium Study 

The previous models used analytic functions to approximate one-dimensional equi- 
libria. Our next results simulate a realistic experiment exhibiting the generality of the 
numerical method. The device is the reversed field theta pinch, FRX-B, at the Los 
Alamos National Laboratory. The experiment consists of a cylindrical vacuum vessel 
open at the ends. Relevant parameters are found in Table I. 

The calculation of the numerical equilibrium was performed by Anderson and 
Barnes [5] and is based on the following: The inertial terms in the momentum 
equation are neglected giving the pressure balance equation (CGS units): 

47rVp, = (V x B,) x B, (42) 

The axisymmetric fields are given in terms of the flux function, 

B, = -(VW x @/r. (43) 
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FIG. 7a. Peaked Tokamak Model. Perturbed B,, ; S = 100, n = 2, k = -0.1. 

FIG. 7b. Peaked Tokamak Model. Perturbed u,, ; S = 100, n = 2, k = -0.1. 
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FIG. 8. Peaked Tokamak Model. Growth rate p vs. magnetic Reynolds number S; n = 2, k = -0.1, 
R,=2. 

The field does not have a toroidal component, a characteristic of theta pinches. 
Equation (42) implies that surfaces of constant pressure are tangent to the magnetic 
surfaces given by w = constant. The vector equation (42) is thereby reduced to the 
single, scalar, usually nonlinear Grad-Shafranov equation 

(44) 

The nonlinearity of the equation stems from the choice made for p(w), the equilibrium 
pressure. The toroidal current -is proportional to r@(w). Solutions of Eq. (44) have 
been discussed ‘elsewhere; see McNamara [ 171 for a good review article. The 
equilibrium fields and currents can be constructed from the two-dimensional function 
~(r, z) and the one-dimensional p’(w). 

The perturbation equations require the calculation of derivatives of the equilibrium 
quantities (see Appendix). These are supplied by a spline package [ 181. The function 
v/ is approximated with bicubic splines and the fields are obtained by differentiating 
the spline. The two-dimensional current and pressure functions are constructed from 
their one dimensional rp’(w) and p(v) formulation. The spline representation allows 
the evaluation of the required equilibrium quantities; v/~, B,, jBO, and po, on a grid 
different from the one used by the equilibrium calculation. Finally, the remaining 
higher order derivatives of B, and j,, are computed using divided differences. 

TABLE I 

Plasma Parameters for reversed field theta pinch experiment, FRX-B, at LANL 

Half length of device 
Radius of device 
Separatrix intersection 
Number density 
Characteristic field strength 
Temperature 
Magnetic Reynolds number 

z MAX = 45 cm 
R,.= 12.5 cm 

zsep = 20.9 cm 
n = lOi cm m3 

B,,(WALL) = 8.8 kg 
T- 1OOev 
s = 10’ 
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FIG. 9a. 

9 m J ID m D 7 to D 0 
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Peaked Tokamak Model. Perturbed B,,; S = 103, n = 2, k = -0.1. 

FIG. 9b. Peaked Tokamak Model. Perturbed B,, ; S = 106, n = 2, k = -0.1. 
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FIG. 10. Flux function contours of FRX-B. 

The equilibrium plasma is cylindrical with tapered ends. In Fig. 10 we show the 
magnetic surface contours; the field is reversed inside the separatrix. The separatrix 
intersects the r and z axes at -4.7 and -21 cm, respectively, making a prolate con- 
figuration. 

The plasma extends to the region of open-field lines. This is evident from Fig. 11 in 
which the pressure contours are plotted. The last contour intersects the r axis at 
6.2 cm; the vacuum region beyond satisfies p0 =jB,, = 0. 

Our model solves the same equation throughout the domain of interest. The 
vacuum is defined to be a highly resistive region. In the results below we set the 
resistivity to be a step function, 

v= 1, rC rll, 
= x,7 r>r,, 

(45) 

where P,,(r, z) = 0 for r > rll. Typical values are X, > lo’, rW > 6.6 cm. In this way 
we model the correct vacuum equation: V x B, = 0, by assigning a disproportionally 
greater influence to the diffusion term in Eq. (4). In order to obtain maximum 
resolution in the important region containing the plasma, we use a variable radial 
mesh which becomes coarser in the vacuum. Most of the results were done with 
Version A, but selected runs were corroborated by Version B. 

12 
1 

FIG. 11. Equilibrium pressure contours of FRX-B. 
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The above equilibrium has B,, = 0, greatly simplifying the calculation by 
removing the interdependence between the real and imaginary components of the 
perturbations. The system decouples into two identical systems of four equations. We, 
therefore, solve only one system. If the poloidal components vary as f(r, z) cos n8, 
the toroidal ones B 0,, vOi necessarily vary as g(r, z) sin ntl in order to satisfy Eq. (5). 

The calculation is begun by initializing the radial-velocity component. The radial 
structure depends on the mode number. The axial dependence of the initial conditions 
is chosen to include both odd and even functions. Furthermore, nonzero values in the 
vacuum are eliminated by multiplication by the equilibrium pressure, po. Thus, 

v,,(t = 0) = vrl(r)p(r, z)[a cos(nz/Z,) + (1 - a) sin(rrz/Z,)], 

where u,i(r) is given by Eq. (37) and 0 < a < 1. 
We shall study the equilibrium by varying S and toroidal mode number n. In 

Fig. 12 we plot the normalized growth rates and note that all three mode numbers 
studied are unstable. The growth rate is independent of S for S 7 103, a sign of ideal 
modes. Our choice of plasma parameters prescribes that tH = 0.9 psec, hence, a 
normalized growth rate of 0.5 is translated into a mode e-folding time of - 1.8 psecs, 
also characteristic of ideal modes. The numerical results were obtained by varying all 
relevant parameters including the mesh size. We note that a too-coarse mesh 
underestimates the growth rate. 

The results for n = 1 are interesting. According to the boundary conditions, 
Eq. (9), this mode is the only one which allows plasma displacement on the axis. The 
superposition of B, on the equilibrium B, along r = 0 led to the name “tilting mode” 
since it results in a tilt of the magnetic axis inside the separatrix. We show this in 
Fig. 13, where we display the field B, + eB1 after both fields have been normalized, 
e.g., B, (normalized) = B/l] BollMax. A careful examination shows how the resulting 
field has been deformed along r = 0. The poloidal velocity is shown in Fig. 14. 

FIG. 12. Stability study of FRX-B. Equilibrium growth rate p vs. magnetic-Reynolds number S. 
n = 1 (-0-); n = 2 (-A-); n = 3 (-C-). 
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FIG. 13. FRX-B model. Superposition of perturbed poloidal field B, on the equilibrium poloidal 
field B,; S = lo’, n = I. Only half the axial extent of the domain about the midplane is shown. 

Although the displacement is primarily axial since ]] u,i/u,i JIMAx N 10, there is flow 
across the axis that is aligned with the tilt. 

For clarity of illustration in Figs. 13 and 14 we have displayed only half the 
computational domain stradling the midplane, ]z] < Z,,,/2. This differs from 
Figs. 11 and 12 where we displayed one half plane, 0 <z <Z,,,. The actual 
domain of computation extended for ]z ( < ZM,,. 

The stability of nearly spherical field reversed configurations has been studied 
analytically by Rosenbluth and Bussac [ 191. They predicted spherical configurations 
to be marginally stable and prolate shapes to be unstable to the n = 1 instability. This 
prediction is corroborated by the calculations of Jardin et al. [20] who conducted an 
extensive study of the tilt and shift instability of configurations resembling the 
spheromak. Our FRX-B simulation also agrees with theory since the theta pinch is a 
prolate, compact-toroidal plasma (sans toroidal field). Furthermore, nonlinear 
simulations by Barnes et al. [21] using the Lagrangian, finite-element code MALICE 
are in excellent agreement with our results. When both MALICE and the present 
program are run using similar coarse meshes, required by the 3-D limitation of 
MALICE, the growth rates agree to within 15 %. The nonlinear runs are particularly 
interesting as they portray the evolution of the tilting of the magnetic axis. Those 

I.0 
t 1 

.8 t i 

FIG. 14. FRX-B model. Perturbed velocity field; S = 103, n = 1. 
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calculations did not include effects of plasma resistivity further supporting the 
conclusion that our results are independent of S. Timing comparisons illustrate the 
usefulness of our model. The nonlinear run first required -1 hr of CRAY - 1 
computer time to “relax” the equilibrium and subsequently -0.5 hr. for the kinetic 
energy to exhibit an exponential growth. An equivalent run for the program described 
here required 1-2 min. 

In fairness we shall mention that the FRX-B experiments have been observed to 
possess long quiescent times in the range of lO-100psec before being terminated by a 
rotational n = 2 instability. Furthermore, there is no evidence of tilting. We shall 
propose several explanations for the discrepancy. Both simulations studies of FRX-B 
used the equilibrium generated by Anderson and Barnes [5]. Barnes has suggested 
[22] that the flux surfaces of FRX may be more “ractrack shaped” rather than ellip- 
tical as in the simulations, e.g., they would closely approximate a 1-D equilibrium at 
the midplane. Such a configuration exhibits greater curvature of the closed magnetic 
contours near the ends and has the effect of “stretching” the flux surfaces. For 
ballooning modes (n = 03), the growth rate is inversely proportional to the AlfvCn 
transit time along the flux surface. Work is presently proceeding to determine the 
influence of greater “rectangularity” of these surfaces on the tilting instability. A 
sequence of equilibria has already been generated [23]. Secondly, our model does not 
include kinetic effects. In FRX, B,, = 0, thus the gyroradius increases greatly near 
the magnetic axis. Such a process would diffuse the mode structure exerting a 
stabilizing influence. Furthermore FLR effects cause particles near, but inside, the 
separatrix to sample the field outside further restricting and diffusing the tilting 
motion which, in our results, is concentrated inside. 

Presently the RIPPLE VI program is used to study numerically generated 
equilibria with toroidal field. Examples are models of the proposed Dee shaped, 
minor cross-section Tokamak at General Atomics Corporation in La Jolla, 
California. In this case the plasma region is entirely surrounded by vacuum. We set 
q-p-y according to classical Spitzer resistivity, since the equation of state and 
our incompressibility assumption imply that p - T. At the interface the diverging 
resistivity is smoothed into a plateau region. It is for cases where q is necessarily two 
dimensional that the AD1 version was developed. 

7. CONCLUSION 

We have developed a numerical model applicable to the study of nonaxisymmetric 
instabilities of two-dimensional equilibria. The axisymmetric equilibria are given in 
cylindrical coordinates. Configurations of interest include both toroidal and cylin- 
drical geometries. Typical equilibria include a plasma region surrounded by a 
vacuum. 

We use the linearized MHD equations to obtain a system of component equations 
for the perturbations which are solved throughout the computational domain. Finite- 
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difference methods are used to discretize the system and implicit methods advance the 
dependent variables. Although the resulting system is a coupled set of eight equations, 
the numerical method advances no more than two variables simultaneously. The 
scheme allows an iterative step which ensures convergence to second order in both 
space and time. In practice the iterative feature has rarely been required. 

The model has corroborated earlier results and has computed the tilting mode in 
the reversed field theta pinch experiment. The last result has also been observed in 
independent nonlinear calculations which are considerably more time consuming. 

APPENDIX 

In this section we shall list the component equations solved by the computer 
program, RIPPLE VI, and describe the boundary conditions. 

The relevant equations are the components of Eqs. (4) and (6). The toroidal 
components are eliminated using Eqs. (5) and (7); note that only the imaginary 
component has a superscript. We shall only give the equations for the real 
components (see Section 5). Equilibrium quantities are subscripted with 0, and S 
denotes the magnetic Reynolds number. The relevant equations are 

aB,, tt -=- at s 
av,, +B,0- &I &. +Bzo~-v aB,o aB,o nB v:, 

Cg-v 
-- 

r’ az 
80 -7 r 641) 

8Bz, -+(BJ-+$ 
at 

au,, 
+40- 

au,, aB,o aB,o nB vf I 
ar +B,o---- rt,,-v -- 

8Z r’ az 00 -7 
r 

(A9 
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The requirement that the perturbed tangential-current component vanish at the 
conducting walls imposes conditions on BeI g iven in Section 4. Eliminating this 
component using div B, = 0 implies 

a/ar[ra(rB,,)/ar + r*aB,,/az] = 0 at r=Rw, 645) 

and 
i?/az[8(rB,,)/t?r + ri?B,,/8z] = 0 at z=Z, G-W 

where R, , Z, denote positions of the conducting walls. 
Last, we shall list the boundary conditions implied by the discussion in Section 4 

regarding the requirement that solutions of Eq. (6) satisfy the equation of motion. We 
require that the vector 

P=&(VXv,)-VX [(VXB,)XB,+(VxB,)xB,] 

satisfies P . n^ = 0. This is assured if both normal components vanish separately. The 
condition on the velocity terms is 

and 

iY*(rv,,) nZvLl 821,, =-- along r = R,, 

along z=z,. 

The conditions for the magnetic components, for the theta pinch experient 
(Bet, = 0), are equivalent to the above relationship when the corresponding B, 
components are substituted for v, . 
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